Statins modulate heat shock protein expression and enhance retinal ganglion cell survival after transient retinal ischemia/reperfusion in vivo.
نویسندگان
چکیده
PURPOSE To evaluate putative mechanisms for the pleiotropic effects of statins, the expression of members of the heat shock family of proteins (HSPs) was compared between normal and ischemic rat retinas after transient retinal ischemia/reperfusion and statin treatment in vivo. METHODS Retinal ischemia/reperfusion was induced by transient elevation of intraocular pressure (IOP). Retinal expression of HSPs was evaluated at different time points after drug and solvent injection and retinal ischemia/reperfusion by means of PCR and Western blot analysis. Immunofluorescent staining and confocal laser scanning microscopy were used to localize the expression of HSPs in normal and ischemic retinas. RESULTS During the acute phase after retinal ischemia, alphaB-crystallin protein and mRNA expression were reduced after statin treatment. After 72 hours of reperfusion, statins increased the expression of alphaB-crystallin and reduced the expression of HSP27 in the retina. Increased expression of alphaB-crystallin early after lesion and statin delivery correlated with increased expression of the heat shock factors 1 and 2. Statins significantly enhanced retinal ganglion cell (RGC) survival 10 days after transient retinal ischemia in vivo. CONCLUSIONS Systemic delivery of statins after a transient period of retinal ischemia significantly modulated HSP expression in the retina and enhanced RGC survival. Together, these results support the notion that statins constitute a feasible therapeutic approach to prevent some of the neuronal damage in the acute and possibly also the delayed phase and have beneficial effects in central nervous system (CNS) disorders directly affecting the visual system.
منابع مشابه
Inhalative preconditioning with hydrogen sulfide attenuated apoptosis after retinal ischemia/reperfusion injury
PURPOSE Retinal ischemia/reperfusion (I/R) injury plays an important role in the pathophysiology of various ocular diseases. Retinal ganglion cells (RGCs) are particularly vulnerable to ischemia. Hydrogen sulfide (H(2)S) was recently shown to be neuroprotective in the brain and retina due to its antiapoptotic effects. Rapid preconditioning of retinal neurons by inhaled H(2)S before I/R injury m...
متن کاملThe Effect of Melatonin on Retinal Ganglion Cell Survival in Ischemic Retina
Our objective was to determine whether melatonin increases retinal ganglion cell (RGC) survival in ischemic mouse retina. Transient retinal ischemia was induced by an acute elevation of intraocular pressure in C57BL/6 mice. To evaluate the effect of melatonin on retinal ischemia, an equal amount of either melatonin or vehicle was intraperitoneally injected into the mice 1 hour before ischemia, ...
متن کاملNeural Stem Cell-based Intraocular Administration of Pigment Epithelium-derived Factor Promotes Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Crush Injury in Rat: An Experimental Study
Background: Pigment epithelium-derived factor (PEDF) is regarded as a multifunctional protein possessing neurotrophic and neuroprotective properties. PEDF has a very short half-life, and it would require multiple injections to maintain a therapeutically relevant level without a delivery system. However, multiple injections are prone to cause local damage or infection. To overcome this, we chose...
متن کاملExpression of proteoglycan decorin in neural retina.
PURPOSE To identify the expression of chondroitin/dermatan sulfate proteoglycan decorin in retina and to elucidate its changes during development and ischemia-reperfusion. METHODS Expression of decorin in rat retina was investigated by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Distributional changes during development and transient ischemia in model ey...
متن کاملChloride channel protein 2 prevents glutamate-induced apoptosis in retinal ganglion cells
Objective(s): The purpose of this study was to investigate the role of chloride channel protein 2 (ClC-2) in glutamate-induced apoptosis in the retinal ganglion cell line (RGC-5). Materials and Methods: RGC-5 cells were treated with 1 mM glutamate for 24 hr. The expression of ClC-2, Bax, and Bcl-2 was detected by western blot analysis. Cell survival and apoptosis were measured by 3-(4,5-dimeth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 49 11 شماره
صفحات -
تاریخ انتشار 2008